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Abstract— We consider the concept of a weighted2-stem
similarity function between two DNA sequences and discuss DNA
codes based on this similarity. An optimal construction of such
codes is suggested. A random coding bound on the rate of DNA
codes is proved. To obtain the bound, we use some ensembles
of DNA sequences which are generalizations of the Fibonacci
sequences.

I. I NTRODUCTION

In order to accomplish DNA computing, it is necessary
to have DNA libraries, also known as DNA codes, of large
size and small energies of hybridization between the DNA
sequences. The ultimate criterion for the value of a similarity
for DNA codes is the degree to which it approximates actual
bonding energies, which in turn determines the degree to
which similarity approximates the likelihood of one codeword
mistakenly binding to the reverse complement of another
codeword. We can use a branch of mathematics known as
coding theory, that was initiated around the same time that
the structure of DNA was discovered, to study the space of
DNA sequences endowed with a measure of similarity. The
introduced measure of similarity between DNA sequences
has an immediate application in determining the similarities
between genes, expressed as DNA sequences, in any existing
genome. Codes built on spaces of DNA sequences can be
implemented in Biomolecular Computing and could have other
important applications. A conventional similarity function for
measuring codeword similarity is the well known deletion sim-
ilarity, i.e., the length of a longest common subsequence [7].
The works of D’yachkov et al. [2], [3], [4] suggest to use
the length of a longest common block subsequence, which
imposes an additional adjacency requirement, with the goal of
modeling actual bonding energies. In this paper, we introduce
the concept of a stem similarity function which provides a
more accurate estimation [1], [2] of the hybridization energy.

II. STATEMENT OF PROBLEM

A. Notations and Auxiliary Definitions

The symbol, denotes definitional equalities and the symbol
[n] , {1; 2; : : : ; n} denotes the set of integers from 1 ton.

0The work was supported by AFOSR – FA8750-07-C-0089

Let {A;C;G; T} be the standard DNA alphabet. For any letter
x ∈ {A;C;G; T}, we define

�x ,





T if x = A,
G if x = C,
C if x = G,
A if x = T

which is called acomplementof the letter x. This means
that the DNA alphabet{A;C;G; T} consists oftwo pairs
of mutually complementary letters: �A = T , �T = A and
�C = G, �G = C.

Let x = (x1; x2; : : : ; xn) and y = (y1; y2; : : : ; yn), where
x; y ∈ {A;C;G; T}n, be two arbitrary DNAn-sequences. By
symbolz = (z1; z2; : : : ; z`) ∈ {A;C;G; T}`, ` ∈ [n], we will
denote acommon subsequence[7] of length |z| , ` betweenx
andy. Theemptysubsequencez of length|z|, 0 is a common
subsequence between any sequencesx andy.

Definition 1. Let 2 ≤ r ≤ n be an arbitrary integer. A
fixed DNA r-sequencea = (a1; a2; : : : ; ar) ∈ {A;C;G; T}r,
is called acommon block for sequencesx andy (briefly, com-
mon(x; y)-block) of lengthr if sequencesx andy (simultane-
ously) containa as a subsequence consisting ofr consecutive
elements ofx andy. We will say that a common(x; y)-block a
yields r−1 common2-stemsai; ai+1 , i ∈ [r−1], containing
2 adjacent symbols of the given common(x; y)-block.

Definition 2. Let 2 ≤ ` ≤ n be an integer. A sequence
z = (z1; z2; : : : ; z`) ∈ {A;C;G; T}` is called acommon block
subsequenceof length |z| , ` betweenx and y if z is
an ordered collectionof non-overlapping (separated) common
(x; y)-blocks and the length of each common(x; y)-block in
this collection is≥ 2. Let Z(x; y) be the set of all common
block subsequences betweenx and y. For anyz ∈ Z(x; y),
we denote byk(z;x; y), 1 ≤ k(z; x; y) ≤ |z|=2 , the minimal
numberof common(x; y)–blocks whichconstitutethe given
subsequencez.

Note that the difference|z|−k(z;x; y), z∈ Z(x; y), is a total
number of common2-stems containing adjacent symbols in
common(x; y)-blocks constitutingz∈ Z(x; y).

Definition 3. [1], [2] For sequencesx; y ∈ {A;C;G; T}n,
the number

S(x; y) , max
z∈Z(x;y)

{|z| − k(z;x; y)} ; S(x; y)≥ 0; (1)
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is called an 2-stem similarity betweenx and y. Obviously,
S(x; y) = S(y;x) ≤ S(x; x) = n− 1.

For any x = (x1; x2; : : : ; xn) ∈ {A;C;G; T}n, we intro-
duce itsreverse complement(Watson-Crick transformation)

x̃ , (�xn; �xn−1; : : : ; �x2; �x1) ∈ {A;C;G; T}n: (2)

If y , x̃, then x = ỹ for any x ∈ {A;C;G; T}n. If x = x̃,
then x is called a self reverse complementarysequence. If
x 6= x̃, thena pair (x ; x̃) is calleda pair of mutually reverse
complementarysequences.

Example. Let n = 10 and

x = (A;T; T;A;A︸ ︷︷ ︸; A;A; T; T;A︸ ︷︷ ︸);

y , x̃ = (T;A;A︸ ︷︷ ︸; T; T; T; T;A︸ ︷︷ ︸; A; T ):

A common block subsequencez betweenx andy = x̃ is

z , (
︷ ︸︸ ︷
T;A;A;

︷ ︸︸ ︷
T; T;A) = z̃ = (x3; x4; x5; x8; x9; x10) =

= (y1; y2; y3; y6; y7; y8) ∈ Z(x; y):
The value k(z; x; y) = 2 and the corresponding2–stem
similarity is

S(x; y) , max
z∈Z(x;y)

{|z| − k(z; x; y)} = 6− 2 = 4:

The maximal value is achieved for the above self reverse
complementary sequencez∈ Z(x; y).
B. Weighted Stem Similarity and Distance

Let w = w(a; b) ≥ 0, a; b ∈ {A;C;G; T}, be a weight
function such that

w(a; b) = w(�b; �a); a; b ∈ {A;C;G; T}: (3)

Condition (3) means thatw(a; b) is an invariant function under
Watson-Crick transformation.

Definition 4. [1], [2] Let z∈ Z(x; y) have the form

z ,
(

z1; z2; : : : ; zk(z;x;y)
)
;

|z| =
k(z;x;y)∑
m=1

|zm| =
k(z;x;y)∑
m=1

rm

where

zm ,
(
zm1 ; zm2 ; : : : ; zmrm

) ∈ {A;C;G; T}rm ;
m = 1; 2; : : : ; k(z; x; y);

is an ordered collection of common(x; y)-blocks constitutingz
and rm , |zm| ≥ 2 is the length of blockzm. For DNA
sequencesx; y ∈ {A;C;G; T}n, the number

S(w)(x; y) , max
z∈Z(x;y)




k(z;x;y)∑
m=1

rm−1∑

i=1
w

(
zmi ; zmi+1

)


 (4)

is called aweighted2-stem similarity betweenx andy. We will
say thatS(w)(x; y) , 0 if and only if the setZ(x; y) =∅.

FunctionS(w)(x; ỹ) is usedto model [2], [3], [4] a ther-
modynamic similarity(hybridization energy) between DNA
sequencesx andy.

Proposition 1. For any x; y ∈ {A;C;G; T}n, the function

S(w)(x; y) = S(w)(y; x) ≤ S(w)(x; x) (5)

In addition,

S(w)(x; ỹ) = S(w)(y; x̃); x; y ∈ {A;C;G; T}n: (6)

The symmetry property and inequality (5) are evident.
Equality (6) follows from definitions (2),(4) and condition (3).
Identity (6) means the symmetry property of hybridization
energy between DNA sequencesx andy [2], [4].

One can easily check that2-stem similarityS(x; y) from
Definition 3 corresponds to the uniform weight function:
w(a; b) ≡ 1 for any a; b ∈ {A;C;G; T}. Table 1 shows an
example [2] of values forw(a; b) which satisfy (3) and have
a significant biological motivation:

w(a; b) b = A b = C b = G b = T
a = A 1.02 1.46 1.29 0.88
a = C 1.46 1.83 2.17 1.29
a = G 1.32 2.24 1.83 1.46
a = T 0.60 1.32 1.46 1.02

Table 1.
Definition 5. [1] The number

D(w)(x; y) , S(w)(x; x) − S(w)(x; y) (7)

is called aweighted2-stem distance betweenx and y.
Typically, D(w)(x; y) 6= D(w)(y; x), i.e., function (7) is not

symmetric. Proposition 1 gives:

D(w)(x; y) ≥ D(w)(x; x) = 0: (8)

C. DNA Codes based on Stem Similarity

Let x(j) , (x1(j); x2(j); : : : ; xn(j)) ∈ {A;C;G; T}n,
j ∈ N , be codewordsof a codeX = {x(1); x(2); : : : ; x(N)}
of lengthn andsizeN , whereN = 2; 4; : : : is an even integer.
Let D, 0 < D ≤ max

x
S(w)(x; x), be an arbitrary positive

number. Taking into account (7) and (8), we give

Definition 6. A code X is called a DNA (n;D;w)-
code based on weighted2-stem similarityS(w)(x; y) (briefly,
(n;D;w)-code) if the following two conditions are fulfilled.
(i). For any numberj ∈ [N ] there existsj′ ∈ [N ], j′ 6= k,

such thatx(j′) = x̃(j) 6= x(j). In other words,X is a
collection ofN=2 pairs of mutually reverse complementary
sequences.(ii). For any j; j′ ∈ [N ], where j 6= j′, the
distanceD(w)(x(j); x(j′)) ≥ D.

The following statement is obvious.
Proposition 2. Let (3) be the uniform weight function, i.e.,

w(a; b) ≡ 1; a; b ∈ {A;C;G; T}:
The corresponding symmetric distance functionD(≡1)(x; y),
x; y ∈ {A;C;G; T}n has the form

D(≡1)(x; y) = D(≡1)(y; x) = (n− 1)− S(x; y); (9)
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where 2-stem similarity S(x; y) is defined by(1), and the
definition of DNA(n;D;≡ 1)-code, 0 < D ≤ n − 1, is
identified by inequality

S(x(j); x(j′)) ≤ (n− 1)−D; j; j′ ∈ [N ]; j 6= j′: (10)

Definition 7. Let N (w)(n;D) be the maximal size of
DNA (n;D;w)-codes based on weighted2-stem similarity. If
d > 0 is a fixed number, then

R(w)(d) , lim
n→∞

log4N (w)(n; nd)
n (11)

is called a rate of DNA (n; nd;w)-codes for adistance
fraction d.

D. Construction of DNA(n; 2;≡ 1)-codes

In papers [3], [4], we introduced the following definitions.
1) A common subsequencez = (z1; : : : ; z`), 2 ≤ ` ≤ n,
is called a common block subsequenceof length |z| , `
betweenx and y if any two consecutive elementszm; zm+1,
m = 1; 2; : : : ; ` − 1, which are consecutive (separated) inx
are also consecutive (separated) iny and vice versa, i.e,

(zm = xim ; zm+1 = xim+1) ↔ (zm = yjm ; zm+1 = yjm+1) :
Let S�(x; y), 0 ≤ S�(x; y) ≤ n, denote the length|z| of
longestsequence occurring as a common block subsequencez
between sequencesx andy. The numberS�(x; y) = S�(y; x)
is called ablock similaritybetweenx andy.
2) Let D, 1 ≤ D ≤ n − 1, be an arbitrary integer. A code
X is called a DNA (n;D)-code based on block similarity
S�(x; y) if the following two conditions are fulfilled.(i) For
any numberj ∈ [N ] there existsj′ ∈ [N ], j′ 6= j, such that

x(j′) = x̃(j) 6= x(j). (ii) For any j; j′ ∈ [N ], wherej 6= j′,
the block similarityS�(x(j); x(j′)) ≤ n−D−1. For givenn
andD, we denote byN�(n;D) the maximal sizeof (n;D)-
codes based on block similarity.

Let x; y ∈ {A;C;G; T}n be arbitrary DNA sequences. One
can easily see that block similarityS�(x; y) = n − 2 iff the
corresponding2-stem similarityS(x; y) = n − 3. Therefore,
from (9)-(10) it follows that the definition of DNA(n; 1)-
code based on block similarity is equivalent to the definition
of DNA (n; 2;≡ 1)-codes based on2-stem similarity. This
means thatN�(n; 1) = N (≡1)(n; 2). Hence, the main result
of paper [4] about constructions of optimal DNA codes based
on block similarity leads to

Theorem 1. If n = 4m, m = 1; 3; 5; : : :, then

N (≡1)(n; 2) = 4n−1 + 4
2 :

E. DNA Codes for Fibonacci Ensembles

Let L be a collection of2-strings of DNA letters,closed
under reverse complement transformation. For instance,

L = ∅; L = {TA}; L = {TA;AT}
L = {TA;AT;AA; TT}: (12)

Denote byDNA(n;L) (briefly, [n;L]) the set (ensemble) of
all DNA sequences whichdo not contain2-stems fromL. We

will say that [n;L] is the FibonacciL-ensemble1. Denote by
�L(n) , |DNA(n;L)| = |[n;L]| the cardinality of [n;L].

Definition 8. Let NL(n;D) be themaximal sizeof DNA
(n;D;≡ 1)-codesX ⊆ DNA(n;L). If the distance fraction
d > 0 is a fixed number, then

RL(d) , lim
n→∞

log4NL(n; nd)
n (13)

is calleda rate of DNA codes for the FibonacciL-ensemble.
For a weight function (3), introduce numbers

wL , min
(a;b)6∈L

w(a; b): (14)

For instance, if the values ofw = w(a; b) are given by Table 1,
then

wL =





0:60 if L = ∅,
0:88 if L = {TA},
1:02 if L = {TA;AT},
1:29 if L = {TA;AT;AA; TT}.

(15)

One can easily check [1] that the distance

D(w)(x; y) ≥ wL · D(≡1)(x; y) if x; y ∈ DNA(n;L):

In virtue of (9) and (10), this gives
Proposition 3. LetwL bea number defined by(14) and a

codeX ⊂ DNA(n;L). If X is a DNA(n;D;≡ 1)-code, then
X is a DNA (n;wL · D;w)-code. Hence, rate(11) satisfies
inequality

R(w)(d) ≥ max
L

RL
( d
wL

)
; (16)

where RL(d) is defined by(13).
In the rest part of paper, we obtain a random coding bound

onRL(d) for L defined by(12). Then applying (16), we get a
random coding bound on the rateR(w)(d) of DNA (n; nd;w)-
codes based on weighted2-stem similarity.

III. R ANDOM CODING BOUNDS

A. On Cardinalities of FibonacciL -Ensembles

If L = ∅, then�L(n) = 4n. If L 6= ∅, then cardinalities
�L(1) = 4 and�L(2) = 16− |L| are given. For setsL define
by (12), we calculate cardinalities�L(n), n = 3; 4 : : :, using
the following well known result from the theory of recurrent
sequences.

Proposition 4. Let f1 6= 0 and f2 6= 0 be arbitrary fixed
numbers. If sequence�L(n), n = 3; 4; : : :, satisfies recurrent
equation

�L(n) = f1 �L(n− 1) + f2 �L(n− 2); (17)

then
�L(n) = C1 rn1 + C2 rn2 ; n = 1; 2; : : : ; (18)

wherer1 = r1(L) andr2 = r2(L) are roots of the characteris-
tic equation r2−f1 r−f2 = 0 andC1 = C1(L), C2 = C2(L)

1Binary 0; 1-sequences which do not contain2-stems of the form(1; 1)
are known as the Fibonacci sequences [6].
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are calculated from initial conditions: 4 = C1 r1 + C2 r2,
16− |L| = C1 r2

1 + C2 r2
2.

Formula (18), obviously, leads to
Proposition 5. If r1; r2 are real numbers,r1 > 0 and

r1 > |r2|, then�L(n), n = 1; 2; : : :, satisfies inequalities

C rn [1 − � �n] ≤ �L(n) ≤ C rn [1 + � �n] ; (19)

where
r = r1 , max{r1; r2}; C , C1;

� ,
∣∣∣∣
r2
r1

∣∣∣∣ < 1; � ,
∣∣∣∣
C2
C1

∣∣∣∣ : (20)

Remark. For the caseL = ∅, bounds (19) will be true as
well (with the sign of equality) if we formally definer1 = 4,
C1 = 1 andr2 = C2 = 0, i.e.,C = 1, r = 4 and� = � = 0.

Lemma 1. If L = {TA}, then�L(n) satisfies(17), where
f1 = 4; f2 = −1. Hence, parameters(20) of bounds(19) are:

r = 2 +
√

3 = 3:73; C = 3 + 2
√

3
6 = 1:08;

� = � = 7− 4
√

3 = :0718: (21)

Lemma 2. If L = {TA;AT}, then �L(n) satisfies(17),
wheref1 = 3; f2 = 2. Hence, parameters(20) of bounds(19)
are:

r = 3 +
√

17
2 = 3:56; C = 17 + 5

√
17

34 = 1:11;

� = 13− 3
√

17
4 = :158; � = 21− 5

√
17

4 = :0961: (22)

Lemma 3. If L = {TA;AT;AA; TT}, then�L(n) satis-
fies (17), wheref1 = 2; f2 = 4. Hence parameters(20) of
bounds(19) are:

r = 1 +
√

5 = 3:24; C = 5 + 3
√

5
10 = 1:17;

� = 3−√5
2 = :382; � = 7− 3

√
5

2 = :146: (23)

Proof of Lemmas 1-3. Let a; b ∈ {A;C;G; T} denote
arbitrary letters of DNA alphabet and

[n;L]a , { x : x ∈ [n;L] and xn = a} ;
[n;L]a;b , { x : x ∈ [n;L] and xn−1 = a; xn = b} ;

denote the corresponding subsets of ensemble[n;L]. If a pair
(a; b) ∈ L, then subset[n;L]a;b = ∅. Note that[n;L]a and
[n;L] can be written as sums of non-intersecting subsets:

[n;L]a = [n;L]A;a + [n;L]C;a + [n;L]G;a + [n;L]T;a
[n;L] = [n;L]A + [n;L]C + [n;L]G + [n;L]T : (24)

In addition, one can easily see the following two properties.
1) If for any b ∈ {A;C;G; T}, pair (b; a) 6∈ L, then the
cardinality

|[n;L]a| = |[n− 1; L]| = �L(n− 1): (25)

2) For any pair(a; b) 6∈ L, the cardinality

|[n;L]a;b| = |[n− 1; L]a| : (26)

Let L = {TA}. In virtue of (24)-(26), we have

�L(n) = 3�L(n−1)+|[n;L]A;A|+|[n;L]C;A|+|[n;L]G;A| =
= 3�L(n−1)+|[n− 1; L]A|+|[n− 1; L]C |+|[n− 1; L]G| =

= 3�L(n− 1) + 2�L(n− 2) + |[n− 1; L]A| :
and

�L(n− 1) = 3�L(n− 2) + |[n− 1; L]A| :
These formulas yield the recurrent equation

�L(n) = 4�L(n− 1)− �L(n− 2); n = 3; 4 : : : ;
formulated in Lemma 1. Using the similar arguments, one can
prove Lemma 2 for setL = {TA;AT} and Lemma 3 for
setL = {TA;AT;AA; TT}.
B. Random Coding Bound for FibonacciL-Ensemble

Let

�L , log4 r; �′L , log4
r

C3(1 + ��2)(1 + ��)2 :

wherer = r(L), C = C(L), � = �(L) and � = �(L) are
introduced in Propositions 4 and 5 and given by formulas (20).
For setsL defined by (12), parameters (20) are calculated
by formulas (21)-(23). In Sect. IV, using a random coding
method [4], we present a brief proof of

Theorem 2. For any distance fractiond > 0, the rate(13)
satisfies inequality

RL(d) ≥ RL(d) , min
0≤u≤d

{(1− u)�L −EL(u)};

where
EL(u) , max

0≤v≤min{u; 1−u}
EL(v; u);

EL(v; u) , −�′L · v + (1−u)h4

( v
1− u

)
+ 2uh4

(v
u

)
;

h(u) , −u log4 u− (1− u) log4(1− u):
Let a numberdL, 0 < dL < 1, be the unique root of

equationRL(d) = 0 or (1 − d)�L = EL(d). Obviously, if
0 < d < dL, thenRL(d) > 0 and the following lower bound

RL(d) ≥ RL(d) , (1− d)�L −EL(d); 0 < d < dL;
holds. FunctionRL(d) is calleda random coding boundon the
rateRL(d). We will say that the numberdL, 0 < dL < 1, is a
critical distance fractionof the random coding boundRL(d)
for DNA(n;L)-ensemble.

For sets (12), our calculations based on Lemmas 1-3 give
the following numerical values for critical distance fractions:

dL =





0:4794 if L = ∅,
0:4316 if L = {TA},
0:4054 if L = {TA;AT},
0:3487 if L = {TA;AT;AA; TT}.

(27)
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C. RandomCoding Bound for DNA(n; dn;w)-Codes

Let R(w)(d), d > 0, be the rate (11) of DNA(n; dn;w)-
codes anddL, 0 < dL < 1, is the critical distance fraction
of random coding boundRL(d) for FibonacciL-ensemble.
Propositions3 and Theorem 2 lead to

Theorem 3. If 0 < d < d(w) , max
L
{wL · dL}, then the

rate R(w)(d) > 0 and lower bound

R(w)(d) ≥ R(w)(d) , max
L

{
RL

( d
wL

)}

holds.
FunctionR(w)(d) is calleda random coding bound for DNA

(n; dn;w)-codes. The numberd(w) > 0 is called acritical
distance fractionof the random coding boundR(w)(d). For
instance, if weight functionw = w(a; b) is defined by Table 1,
then for sets (12), numbers (15) and (27) give:

wL · dL =





0:29 if L = ∅,
0:38 if L = {TA},
0:41 if L = {TA;AT},
0:45 if L = {TA;AT;AA; TT}.

Therefore, the corresponding critical distance fraction is
d(w) , max

L
{wL · dL} = 0:45.

IV. PROOF OFTHEOREM 2

Let S(x; y) be 2-stem similarity (1) for the uniform weight
function. For an arbitrary integers ∈ [n − 1], define the set
PL(n; s) , {(x; y) ∈ [n;L]× [n;L] : S(x; y) = s}.

Lemma 4. The size

|PL(n; s)| ≤
min{s;n−s}∑

j=1
rs+j

(s− 1
j − 1

) [
C (1 + � �2)

]j ×

×
{
rn−s−j [C (1 + � �)]j+1

(n− s
j

)}2
; (28)

wherer = r(L), C = C(L), � = �(L) and � = �(L) were
introduced in the formulation of Theorem2.

The random coding method of [4], Lemma 4 and an asymp-
totic analysis on the right-hand side of(28) yield Theorem 2.
To complete the proof of Theorem 2, we give

Proof of Lemma 4. Consider a pair(x; y) ∈ An×An for
which S(x; y) = s. Then there existsz∈ Z(x; y), |z| ≤n, and
the integerj = k(z; x; y)≤ |z|=2 for which equalities

s = |z| −j ⇐⇒ |z|= s+ j ⇐⇒ n− |z| = n− s− j
take place. It follows that for anyz ∈ Z(x; y), the number
j = k(z;x; y) satisfies inequalities1 ≤ j ≤ min{s ; n− s} :

Obviously, the number of all ways to distribute|z| indistin-
guishable marbles inj boxes provided that each ofj boxes
contains≥ 2 marbles is

(s−1
j−1

)
: In addition, the number of all

ways to distributen − |z| indistinguishable marbles inj + 1
boxes if empty boxes are accepted is

(n−s
j

)
:

Let 1 ≤ j ≤ b ≤ n be fixed integers and

{b`} , (b1; b2; : : : ; b`; : : : ; bj); b` ≥ 1;

is an ordered collection of integers. Form = 1; 2, introduce
two sets

({b`})m ,
{
{b`} :

j∑

`=1
b` = b; b` ≥ m

}
(29)

and define numbers

�̃mL (j; b) , max
({b`})m

{ j∏

`=1
�L(b`)

}
: (30)

Applying above formulas and notations, one can see that
for any s ∈ [n− 1], the cardinality

|PL(n; s)| ≤
min{s ;n−s}∑

j=1
�̃2
L (j ; s+ j) ·

(s− 1
j − 1

)
×

×
[
�̃1
L (j + 1 ; n− s− j)

(n− s
j

)]2
: (31)

From definition (29)-(30) and upper bound (19) it follows that
for m = 1; 2,

�̃mL (j; b) ≤ max
({b`})m

{ j∏

`=1

[
C rb`

(
1 + � �b`

)]
}
≤

≤ Cj rb max
({b`})m

{ j∏

`=1

[
1 + ��b`

]
}
≤ rb [C(1 + ��m)]j :

These inequalities and (31) lead to (28).
Lemma 4 is proved.

REFERENCES

[1] Bishop M.A.,D’yachkov A.G., Macula A.J., Renz T.E., Rykov V.V., Free
Energy Gap and Statistical Thermodynamic Fidelity of DNA Codes //
Journal of Computational Biology, 2007, V. 14, N. 8, P. 1088-1104.

[2] D’yachkov A.G.,Macula A.J.,Pogozelski W.K., Renz T.E., Rykov V.V.,
Torney D.C., A Weighted Insertion—Deletion Stacked Pair Thermody-
namic Metric for DNA Codes // Proc. of 10th Int. Workshop on DNA
Computing. Milan, Italy, 2004, P. 90–103.

[3] D’yachkov A.G.,Macula A.J., Renz T.E.,Vilenkin P.A,Ismagilov I.K, New
Results on DNA Codes // Proc. of the2005 IEEE International Sym-
posium on Information Theory, Adelaide, South Australia, Australia,
September 4 - 9, 2005, P. 283-288.

[4] D’yachkov A.G., Macula A.J., Torney D.C.,Vilenkin P.A., White P.S.,
Ismagilov I.K., Sarbayev R.S., On DNA Codes // Probl. Peredachi
Informatsii, 2005, V. 41, N. 4, P. 57-77, (in Russian). English translation:
Problems of Information Transmission, V. 41, N. 4, 2005, P. 349-367.

[5] D’yachkov A.G., Erdos P.L., Macula A.J., Rykov V.V., Torney D.C.,
Tung C.S., Vilenkin P.A., White P.S., Exordium for DNA Codes // J.
Comb. Optimization, V. 7, N. 4, 2003, P. 369–379.

[6] Cameron P.J.,Combinatorics: Topics, Techniques, Algorithms, Cam-
bridge University Press, 1994.

[7] Levenshtein V.I., Efficient Reconstruction of Sequences from Their
Subsequences and Supersequences // J. Comb. Th., Ser. A, V. 93, 2001,
P. 310-332.

5




